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1 Piecewise via Function Composition

There are a class of piecewise functions that can be formed via the composition
of two traditionally non-piecewise functions. Incidentally, these compositions
form some well known piecewise functions.

We begin by letting U, V,D ⊂ R, U ⊆ D, be sets and F : D → V a function.
We define the function f = F |U (the restriction of F to U), so that there exists
a function g : V → U for which:

(g ◦ f)(x) = x, x ∈ U
(f ◦ g)(x) = x, x ∈ V

In other words, f(x) is a bijective function. We now wish to find the function
(g ◦ F )(x); namely, an extension of the left inverse of f , over the reals. We also
note immediately that (F ◦ g)(x) = x as x ∈ V .

We begin by first defining the function p : D → U, p(x) = (g ◦F )(x). Using
the fact that (F ◦ g)(x) = x, we have that (F ◦ p)(x) = F (x). If this equation
can be solved for p(x), then we have that (in most general form):

p(x) = {pi(x), Ui | i ∈ I}

Where pi(x) is a solution of the above on some domain, and Ui defines that
domain. To find Ui, we note that p(x) ∈ U =⇒ pi(x) ∈ U . Therefore:

p(x) = {pi(x), pi(x) ∈ U | i ∈ I}

To verify that this is our solution, we ensure that we have all solutions for p(x);
more specifically: ∨

i∈I
(pi(x) ∈ U) ⇐⇒ x ∈ D

Alternatively, using Iverson bracket notation;∑
i∈I

[pi(x) ∈ U ] = [x ∈ D]

1.1 Absolute Value

The absolute value function is special in that it can be ‘created’ in infinitely
many different ways via a simple class of functions: the even functions with
range [0,∞).

Let F : R → [0,∞) be an even function. Then we let f = F |[0,∞) be a
function for which there exists g : [0,∞)→ [0,∞) such that (g ◦ f)(x) = x and
(f ◦ g)(x) = x for x ∈ [0,∞).

Let p(x) = (g ◦ F )(x), then F (p(x)) = F (x). For x ≥ 0, we have f(p(x)) =
f(x) ⇐⇒ p(x) = x, by bijectivity of f . For x ≤ 0, by the evenness of F we
have F (p(x)) = F (−x), and by the same argument gives p(x) = −x.

Therefore:

p(x) = (g ◦ F )(x) =

{
x x ≥ 0

−x x ≤ 0
= |x|
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2 sin(x) and arcsin(x)

The function sin : [−π2 ,
π
2 ] has an inverse function, arcsin : [−1, 1], for which

both sin(arcsin(x)) = x and arcsin(sin(x)) = x are true. However, we wonder
what would ‘happen’ if the domain of sin were extended to the reals. We know
that arcsin ceases to be an inverse of sin over the reals. But more specifically,
what does arcsin(sin(x)) evaluate to, and what does sin(arcsin(x)) evaluate to?

2.1 f(x) = sin(arcsin(x))

Firstly, we consider that any function f(x) = sin(arcsin(x)) must have a domain
x ∈ [−1, 1] and that f(x) ∈ [−1, 1] also. We could stop here, but for the sake of
consistency I’ll keep going with this argument.

To consider how f(x) is constructed, we look for solutions in terms of x,
ideally without a composition of inverses. To do this, we take arcsin(f(x)) =
arcsin(x) which gives f(x) = x, noting that sin(arcsin(x)) = x over our domain.

To further verify that f(x) = x is the only piece, we take that f(x) ∈ [−1, 1]
and substitute the piece in; namely, x ∈ [−1, 1] which is just our domain.

Therefore:
f : [−1, 1], f(x) = x

(Hint: this is the boring one)

2.2 f(x) = arcsin(sin(x))

To establish what exactly this function is, we need to solve for f(x) without a
composition of inverses, a similar process to the previous function. However,
this time, we can’t use arcsin(x); namely, because we don’t know that for x ∈ R,
that arcsin(sin(x)) = x: that’s what we’re trying to (not) show.

Firstly, consider sin(f(x)) = sin(x) which gives sin(f(x))− sin(x) = 0.
We now note that sin(a+ b) + sin(a− b) = 2 sin(a) cos(b). If we let a =

f(x)−x
2 and b = f(x)+x

2 we get the following:

sin(f(x))− sin(x) = 2 sin

(
f(x)− x

2

)
cos

(
f(x) + x

2

)
= 0

Hence, we have solutions:

1

2
(f(x)− x) = mπ =⇒ f(x) = 2mπ + x m ∈ Z (1)

1

2
(f(x) + x) =

(2n+ 1)π

2
=⇒ f(x) = (2n+ 1)π − x n ∈ Z (2)

Then we use the fact that −π2 ≤ f(x) ≤ π
2 to establish domains for our

respective pieces:

−π
2
≤ 2mπ + x ≤ π

2
=⇒ −π

2
(4m+ 1) ≤ x ≤ −π

2
(4m− 1) (3)

−π
2
≤ (2n+ 1)π − x ≤ π

2
=⇒ (4n+ 1)

π

2
≤ x ≤ (4n+ 3)

π

2
(4)
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We know that this function is continuous; we could write it piecewise now
as the following function:

f(x) =
{

2mπ + x, x ∈
[
−π

2
(4m+ 1),−π

2
(4m− 1)

]
| m ∈ Z

}
∪
{

(2n+ 1)π − x, x ∈
[π

2
(4n+ 1),

π

2
(4n+ 3)

]
| n ∈ Z

}
By observation, this function doesn’t lend itself to being continuous. The

most apparent thing is the variable m is negative when n is positive. This is
just a case of notation, as m spans all integers. Hence if we write m→ −n, we
have:

f(x) =
{
−2nπ + x, x ∈

[π
2

(4n− 1),
π

2
(4n+ 1)

]
| n ∈ Z

}
∪
{

(2n+ 1)π − x, x ∈
[π

2
(4n+ 1),

π

2
(4n+ 3)

]
| n ∈ Z

}
In this form we can’t do much, so we consider pieces, namely:

g :
[π

2
(4n− 1),

π

2
(4n+ 3)

]
, g(x) =

{
−2nπ + x x ≤ π

2 (4n+ 1)

(2n+ 1)π − x x ≥ π
2 (4n+ 1)

=
π

2
−
∣∣∣x− π

2
(4n+ 1)

∣∣∣
And subsequently rewrite f(x) as:

f(x) =
{π

2
−
∣∣∣x− π

2
(4n+ 1)

∣∣∣, x ∈
[π

2
(4n− 1),

π

2
(4n+ 3)

]
| n ∈ Z

}
While derivation of this won’t be given here (see site), using a sticking for-

mula, one could write this, for n→∞, as:

fn(x) = nπ +
1

2

n∑
k=−n

(
π −

∣∣∣∣∣∣x− π

2
(4k − 1)

∣∣∣− ∣∣∣x− π

2
(4k + 3)

∣∣∣∣∣∣)
One could alternatively write this function in terms of the floor (or ceil-

ing) function, provided each piece has a half-closed interval (this is a trivial
assumption since the function is continuous; the floor function is not):

f(x) =
{π

2
−
∣∣∣x− π

2
(4n+ 1)

∣∣∣, x ∈
[π

2
(4n− 1),

π

2
(4n+ 3)

]
| n ∈ Z

}
=
π

2
−
∣∣∣x− π

2

(
1 + 4

{
n, x ∈

[π
2

(4n− 1),
π

2
(4n+ 3)

)
| n ∈ Z

})∣∣∣
=
π

2
−
∣∣∣∣x− π

2

(
1 + 4

{
n,

2x

π
+ 1 ∈ [4n, 4n+ 4) | n ∈ Z

})∣∣∣∣
=
π

2
−
∣∣∣∣x− π

2

(
1 + 4

{
n,

x

2π
+

1

4
∈ [n, n+ 1) | n ∈ Z

})∣∣∣∣
=
π

2
−
∣∣∣∣x− π

2

(
1 + 4

⌊
x

2π
+

1

4

⌋)∣∣∣∣
Should one also be so inclined, using transformations of x and f(x) (by

properties of sin(x)), we can rewrite this in terms of the mod function, related
to the floor via mod(x, n) = x− n

⌊
x
n

⌋
:

f(x) =
∣∣∣mod(x− π

2
, 2π)− π

∣∣∣− π

2
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Furthermore (and I promise this is the last form), f(x) can be approximated
using a fourier series, using g(x) ∈ [−π2 ,

3π
2 ].

f(x) = − 4

π

∞∑
n=1

(
(−1)n

(2n− 1)2
sin((2n− 1)x)

)
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